• Skip to primary navigation
  • Skip to content
  • Skip to footer

DGFI

Offizielle Homepage der Deutschen Gesellschaft für Immunologie

immunologie-logo[1]
  • Anmelden
  • Kontakt
  • English
  • Datenschutz
  • Über uns 
    • Die Gesellschaft
    • Vorstand
    • Beirat
    • Kommissionen
    • Gremien
    • Geschäftsstelle
    • Ehrungen
    • Nachrufe
    • Geschichte
    • Jahrestagungen
  • ForschungArbeitskreise
    • News
    • Forschungseinrichtungen
    • Immunologinnen im Blick
    • Tierversuche bleiben unverzichtbar in Forschung und Klinik
    • Die Arbeitskreise der DGfI
      • Unsere Arbeitskreise im Überblick
      • Anmeldung Arbeitskreise
      • AK Allergie und Immunologie
      • AK Biologie der B Lymphozyten
      • AK Dendritische Zellen
      • AK Infektionsimmunologie
      • AK Klinische Immunologie
      • AK Komplementsystem
      • AK Neuroimmunologie
      • AK NK-Zellen und ILCs
      • AK Pädiatrische Immunologie
      • AK Reproduktionsimmunologie
      • AK Signaltransduktion
      • AK Transplantationsimmunologie
      • AK Tumorimmunologie
      • AK T-Zellen
      • AK Vakzine
      • AK Veterinärimmunologie
  • WeiterbildungAusbildung
    • Immunologie im Studium
    • DGfI Akademie für Immunologie
      • Modul 1: Herbstschule
      • Modul 2: Spring School
        • IUIS-DGfI stipends
      • Modul 3: Translational Immunology School
      • Modul 4: Zertifikat Fachimmunologe DGfI
    • Lecture Series
      • The Immune Alliance Lectures
      • Lady Mary Montagu Lectures
      • Young Immunologists Seminar Series
    • Weiterbildung für Mediziner
      • Zusatz-Weiterbildung Immunologie
      • Klinisches Symposium DGfI
  • NachwuchsFörderung
    • Young Immunologists
    • Reisekostenbeihilfen und Stipendien
    • Gleichstellung
    • Preise
      • Deutscher Immunologiepreis
      • Otto-Westphal-Promotionspreis
      • Hans-Hench-Preis für Klinische Immunologie
      • Fritz-und-Ursula-Melchers-Preis
      • Herbert-Fischer-Preis für Neuroimmunologie
      • Werner-Müller-Preis
      • Georges-Köhler-Preis
      • Novartis-Preis
      • Robert-Koch-Postdoktorandenpreis
      • Weitere Preise
  • Für JedermannWissenswertes aus der Immunologie
    • Immunologie-Journal
    • Für Jedermann
    • Patienten
    • Immunologie-Buch
    • Corona
      • FAQ Schutzimpfung
      • Impfung bei Vorerkrankungen
      • Long Covid
      • Forschungsnews
      • Mediathek
  • Mitgliederund Service
    • Mitgliederbereich
    • Mitgliederzeitschrift DGfI Quarterly
    • Mitglied werden
    • Korporative Mitglieder
    • Service
      • Pressemitteilungen
      • Termine
      • Externe Stellenangebote
      • Forschungsförderung
      • Datenschutz
      • Kontakt
Home > News

Der Nobelpreis für Physiologie oder Medizin 2022

03.10.2022

Die Nobelversammlung des Karolinska Institutet hat heute beschlossen, den Nobelpreis für Physiologie oder Medizin 2022 an Svante Pääbo für seine Entdeckungen über die Genome ausgestorbener Homininen und die menschliche Evolution zu verleihen.

Die Menschheit war schon immer von ihren Ursprüngen fasziniert. Woher kommen wir, und wie sind wir mit denen verwandt, die vor uns kamen? Was unterscheidet uns, den Homo sapiens, von anderen Homininen?

Svante Pääbo hat mit seiner bahnbrechenden Forschung etwas scheinbar Unmögliches geschafft: die Sequenzierung des Genoms des Neandertalers, eines ausgestorbenen Verwandten des heutigen Menschen. Außerdem machte er die sensationelle Entdeckung eines bisher unbekannten Homininen, Denisova. Bemerkenswert ist, dass Pääbo auch herausfand, dass ein Gentransfer von diesen inzwischen ausgestorbenen Homininen auf den Homo sapiens stattgefunden hat, nachdem sie vor etwa 70 000 Jahren aus Afrika ausgewandert waren. Dieser uralte Genfluss auf den heutigen Menschen ist heute physiologisch relevant, da er zum Beispiel die Reaktion unseres Immunsystems auf Infektionen beeinflusst.

Pääbos bahnbrechende Forschungen führten zur Entstehung einer völlig neuen wissenschaftlichen Disziplin: der Paläogenomik. Durch die Aufdeckung genetischer Unterschiede, die alle lebenden Menschen von ausgestorbenen Homininen unterscheiden, bilden seine Entdeckungen die Grundlage für die Erforschung dessen, was uns zu einzigartigen Menschen macht.

Woher kommen wir?

Die Frage nach unserem Ursprung und dem, was uns einzigartig macht, beschäftigt die Menschheit seit der Antike. Paläontologie und Archäologie sind wichtig für die Erforschung der menschlichen Evolution. Durch Forschung konnte der Nachweis erbrachtwerden, dass der anatomisch moderne Mensch, Homo sapiens, erstmals vor etwa 300 000 Jahren in Afrika auftauchte, während unsere nächsten bekannten Verwandten, die Neandertaler, sich außerhalb Afrikas entwickelten und Europa und Westasien vor etwa 400 000 Jahren bis vor 30 000 Jahren bevölkerten, als sie ausstarben. Vor etwa 70.000 Jahren wanderten Gruppen von Homo sapiens von Afrika in den Nahen Osten ein und verbreiteten sich von dort aus in den Rest der Welt. Homo sapiens und Neandertaler lebten also in weiten Teilen Eurasiens über Zehntausende von Jahren nebeneinander. Doch was wissen wir über unsere Beziehung zu den ausgestorbenen Neandertalern? Anhaltspunkte könnten sich aus genomischen Informationen ergeben. Ende der 1990er Jahre war fast das gesamte menschliche Genom sequenziert worden. Dies war eine beachtliche Leistung, die spätere Studien über die genetischen Beziehungen zwischen verschiedenen menschlichen Populationen ermöglichte. Um jedoch die Beziehung zwischen dem heutigen Menschen und dem ausgestorbenen Neandertaler zu untersuchen, wäre die Sequenzierung von genomischer DNA aus archaischen Exemplaren erforderlich.

Eine scheinbar unmögliche Aufgabe

Schon früh in seiner Karriere war Svante Pääbo fasziniert von der Möglichkeit, die DNA der Neandertaler mit modernen genetischen Methoden zu untersuchen. Er erkannte jedoch bald die extremen technischen Herausforderungen, denn die DNA wird mit der Zeit chemisch verändert und zerfällt in kurze Fragmente. Nach Tausenden von Jahren sind nur noch Spuren von DNA übrig, und was übrig bleibt, ist massiv mit DNA von Bakterien und heutigen Menschen verunreinigt (Abbildung 1). Als Postdoktorand bei Allan Wilson, einem Pionier auf dem Gebiet der Evolutionsbiologie, begann Pääbo mit der Entwicklung von Methoden zur Untersuchung der DNA von Neandertalern - ein Unterfangen, das mehrere Jahrzehnte dauerte.

press-medicine2022-figure1web
Abbildung 1. Die DNA ist in der Zelle in zwei verschiedenen Kompartimenten lokalisiert. Die Kern-DNA beherbergt den größten Teil der genetischen Information, während das viel kleinere mitochondriale Genom in Tausenden von Kopien vorhanden ist. Nach dem Tod wird die DNA im Laufe der Zeit abgebaut, und schließlich bleiben nur noch kleine Mengen übrig. Sie wird auch mit DNA von z. B. Bakterien und dem heutigen Menschen kontaminiert. © The Nobel Committee for Physiology or Medicine. Illustrator: Mattias Karlén

1990 wurde Pääbo an die Universität München berufen, wo er als neu ernannter Professor seine Arbeit an archaischer DNA fortsetzte. Er beschloss, die DNA von Mitochondrien der Neandertaler zu analysieren - Organellen in Zellen, die ihre eigene DNA enthalten. Das mitochondriale Genom ist klein und enthält nur einen Bruchteil der genetischen Information in der Zelle, aber es ist in Tausenden von Kopien vorhanden, was die Erfolgsaussichten erhöht. Mit seinen verfeinerten Methoden gelang es Pääbo, einen Bereich der mitochondrialen DNA aus einem 40 000 Jahre alten Knochenstück zu sequenzieren. Damit hatten wir zum ersten Mal Zugang zu einer Sequenz von einem ausgestorbenen Verwandten. Vergleiche mit heutigen Menschen und Schimpansen zeigten, dass der Neandertaler genetisch anders war.

Sequenzierung des Neandertaler-Genoms

Da die Analysen des kleinen mitochondrialen Genoms nur begrenzte Informationen lieferten, nahm Pääbo nun die enorme Herausforderung an, das Kerngenom des Neandertalers zu sequenzieren. Zu dieser Zeit erhielt er das Angebot ein Max-Planck-Institut in Leipzig zu gründen. Am neuen Institut verbesserten Pääbo und sein Team kontinuierlich die Methoden zur Isolierung und Analyse von DNA aus archaischen Knochenresten. Das Forschungsteam nutzte neue technische Entwicklungen, die die Sequenzierung von DNA sehr effizient machten. Pääbo engagierte auch mehrere wichtige Mitarbeiter mit Fachwissen über Populationsgenetik und fortgeschrittene Sequenzanalysen. Seine Bemühungen waren erfolgreich. Pääbo schaffte das scheinbar Unmögliche und konnte 2010 die erste Genomsequenz des Neandertalers veröffentlichen. Vergleichende Analysen zeigten, dass der jüngste gemeinsame Vorfahre von Neandertaler und Homo sapiens vor etwa 800.000 Jahren lebte.

press-medicine2022-figure2web
Abbildung 2. A. Pääbo extrahierte DNA aus Knochenproben von ausgestorbenen Homininen. Zunächst erhielt er ein Knochenfragment aus dem Neandertal in Deutschland, dem Fundort, der den Neandertalern ihren Namen gab. Später verwendete er einen Fingerknochen aus der Denisova-Höhle in Südsibirien, dem Fundort der Denisovaner. B. Phylogenetischer Baum, der die Entwicklung und Beziehung zwischen Homo sapiens und den ausgestorbenen Homininen zeigt. Der phylogenetische Baum veranschaulicht auch die von Pääbo entdeckten Genflüsse. © The Nobel Committee for Physiology or Medicine. Illustrator: Mattias Karlén

Pääbo und seine Mitarbeiter konnten nun die Beziehung zwischen Neandertalern und modernen Menschen aus verschiedenen Teilen der Welt untersuchen. Vergleichende Analysen zeigten, dass die DNA-Sequenzen von Neandertalern den Sequenzen von heutigen Menschen aus Europa oder Asien ähnlicher waren als denen von heutigen Menschen aus Afrika. Dies bedeutet, dass sich Neandertaler und Homo sapiens während ihrer jahrtausendelangen Koexistenz gekreuzt haben. Bei heutigen Menschen europäischer oder asiatischer Abstammung stammen etwa 1-4 % des Genoms von den Neandertalern ab (Abbildung 2).

Eine sensationelle Entdeckung: Denisova

2008 wurde in der Denisova-Höhle im südlichen Sibirien ein 40.000 Jahre altes Fragment eines Fingerknochens entdeckt. Der Knochen enthielt außergewöhnlich gut erhaltene DNA, die das Team um Pääbo sequenzierte. Die Ergebnisse sorgten für Aufsehen: Die DNA-Sequenz war im Vergleich zu allen bekannten Sequenzen von Neandertalern und heutigen Menschen einzigartig. Pääbo hatte einen bisher unbekannten Homininen entdeckt, der den Namen Denisova erhielt. Vergleiche mit Sequenzen von zeitgenössischen Menschen aus verschiedenen Teilen der Welt zeigten, dass es auch zwischen Denisova und Homo sapiens zu einem Genfluss gekommen war. Diese Verwandtschaft wurde erstmals in Populationen in Melanesien und anderen Teilen Südostasiens festgestellt, wo Individuen bis zu 6 % Denisova-DNA tragen.

Die Entdeckungen von Pääbo haben zu einem neuen Verständnis unserer Evolutionsgeschichte geführt. Zu der Zeit, als der Homo sapiens aus Afrika auswanderte, lebten mindestens zwei ausgestorbene Homininenpopulationen in Eurasien. Die Neandertaler lebten im Westen Eurasiens, während die Denisovaner die östlichen Teile des Kontinents bevölkerten. Während der Ausbreitung des Homo sapiens außerhalb Afrikas und seiner Wanderung nach Osten stieß er nicht nur auf Neandertaler, sondern auch auf Denisovaner und kreuzte sich mit ihnen (Abbildung 3).

press-medicine2022-figure3web
Abbildung 3. Die Entdeckungen von Pääbo haben wichtige Informationen darüber geliefert, wie die Welt zu der Zeit bevölkert war, als der Homo sapiens aus Afrika auswanderte und sich im Rest der Welt verbreitete. Neandertaler lebten im Westen und Denisovaner im Osten des eurasischen Kontinents. Als sich der Homo sapiens über den Kontinent ausbreitete, kam es zu Kreuzungen, die Spuren in unserer DNA hinterlassen haben. © The Nobel Committee for Physiology or Medicine. Illustrator: Mattias Karlén

Paläogenomik und ihre Bedeutung

Mit seinen bahnbrechenden Forschungsarbeiten begründete Svante Pääbo eine völlig neue wissenschaftliche Disziplin, die Paläogenomik. Nach den ersten Entdeckungen hat seine Gruppe die Analyse mehrerer weiterer Genomsequenzen von ausgestorbenen Homininen abgeschlossen. Pääbos Entdeckungen haben eine einzigartige Ressource geschaffen, die von der wissenschaftlichen Gemeinschaft intensiv genutzt wird, um die menschliche Evolution und Migration besser zu verstehen. Neue leistungsfähige Methoden zur Sequenzanalyse deuten darauf hin, dass sich auch archaische Homininen in Afrika mit Homo sapiens vermischt haben könnten. Bisher wurden jedoch noch keine Genome von ausgestorbenen Homininen in Afrika sequenziert, da sich der Abbau archaischer DNA in tropischem Klima beschleunigt.

Dank der Entdeckungen von Svante Pääbo wissen wir jetzt, dass archaische Gensequenzen unserer ausgestorbenen Verwandten die Physiologie des heutigen Menschen beeinflussen. Ein Beispiel dafür ist die denisovanische Version des Gens EPAS1, die einen Vorteil für das Überleben in großen Höhen bietet und bei den heutigen Tibetern verbreitet ist. Andere Beispiele sind Neandertaler-Gene, die unsere Immunantwort auf verschiedene Arten von Infektionen beeinflussen.

Was macht uns zu einzigartigen Menschen?

Der Homo sapiens zeichnet sich durch seine einzigartige Fähigkeit aus, komplexe Kulturen, fortschrittliche Innovationen und figurative Kunst zu schaffen, sowie durch die Fähigkeit, offene Gewässer zu überqueren und sich in alle Teile unseres Planeten auszubreiten (Abbildung 4). Neandertaler lebten ebenfalls in Gruppen und hatten große Gehirne (Abbildung 4). Sie benutzten auch Werkzeuge, die sich jedoch im Laufe von Hunderttausenden von Jahren nur wenig weiterentwickelten. Die genetischen Unterschiede zwischen dem Homo sapiens und unseren nächsten ausgestorbenen Verwandten waren unbekannt, bis sie durch Pääbos bahnbrechende Arbeit identifiziert wurden. Die laufende intensive Forschung konzentriert sich auf die Analyse der funktionellen Auswirkungen dieser Unterschiede mit dem Ziel, zu erklären, was uns zu einzigartigen Menschen macht.

press-medicine2022-figure4web
Abbildung 4. Pääbos bahnbrechende Arbeit bietet eine Grundlage für die Erklärung dessen, was uns einzigartig menschlich macht. © The Nobel Committee for Physiology or Medicine. Illustrator: Mattias Karlén

Wichtige Veröffentlichungen
Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S. Neandertal DNA sequences and the origin of modern humans. Cell. 1997:90:19-30.

Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH, Hansen NF, Durand EY, Malaspinas AS, Jensen JD, Marques-Bonet T, Alkan C, Prüfer K, Meyer M, Burbano HA, Good JM, Schultz R, Aximu-Petri A, Butthof A, Höber B, Höffner B, Siegemund M, Weihmann A, Nusbaum C, Lander ES, Russ C, Novod N, Affourtit J, Egholm M, Verna C, Rudan P, Brajkovic D, Kucan Ž, Gušic I, Doronichev VB, Golovanova LV, Lalueza-Fox C, de la Rasilla M, Fortea J, Rosas A, Schmitz RW, Johnson PLF, Eichler EE, Falush D, Birney E, Mullikin JC, Slatkin M, Nielsen R, Kelso J, Lachmann M, Reich D, Pääbo S. A draft sequence of the Neandertal genome. Science. 2010:328:710-722.

Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Pääbo S. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature. 2010:464:894-897.

Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, Viola B, Briggs AW, Stenzel U, Johnson PL, Maricic T, Good JM, Marques-Bonet T, Alkan C, Fu Q, Mallick S, Li H, Meyer M, Eichler EE, Stoneking M, Richards M, Talamo S, Shunkov MV, Derevianko AP, Hublin JJ, Kelso J, Slatkin M, Pääbo S. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010:468:1053-1060.

Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, Schraiber JG, Jay F, Prüfer K, de Filippo C, Sudmant PH, Alkan C, Fu Q, Do R, Rohland N, Tandon A, Siebauer M, Green RE, Bryc K, Briggs AW, Stenzel U, Dabney J, Shendure J, Kitzman J, Hammer MF, Shunkov MV, Derevianko AP, Patterson N, Andrés AM, Eichler EE, Slatkin M, Reich D, Kelso J, Pääbo S. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012:338:222-226.

Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G, Sudmant PH, de Filippo C, Li H, Mallick S, Dannemann M, Fu Q, Kircher M, Kuhlwilm M, Lachmann M, Meyer M, Ongyerth M, Siebauer M, Theunert C, Tandon A, Moorjani P, Pickrell J, Mullikin JC, Vohr SH, Green RE, Hellmann I, Johnson PL, Blanche H, Cann H, Kitzman JO, Shendure J, Eichler EE, Lein ES, Bakken TE, Golovanova LV, Doronichev VB, Shunkov MV, Derevianko AP, Viola B, Slatkin M, Reich D, Kelso J, Pääbo S. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014:505: 43-49.

Svante Pääbo wurde 1955 in Stockholm, Schweden, geboren. Er promovierte 1986 an der Universität Uppsala und war Postdoktorand an der Universität Zürich, Schweiz, und später an der University of California, Berkeley, USA. 1990 wurde er Professor an der Universität München, Deutschland. Im Jahr 1999 gründete er das Max-Planck-Institut für evolutionäre Anthropologie in Leipzig, wo er noch immer tätig ist. Außerdem ist er außerordentlicher Professor am Okinawa Institute of Science and Technology, Japan.

Quelle: Pressemitteilung der Nobelversammlung am Karoliska Institut 10/2022

Footer

Partner

hans-hench-stiftung

Siegel

tvv_qualitaetssiegel22_230629
linkedin-button
bluesky-blue-round-circle-logo-24461
128px-2021_Facebook_icon.svg

© 2025 Deutsche Gesellschaft für Immunologie e.V. · Log in

Zum Seitenanfang

  • Über uns
  • Inhaltsverzeichnis
  • Datenschutz
  • Kontakt
  • Impressum
  • Über uns
    ▼
    • Die Gesellschaft
    • Vorstand
    • Beirat
    • Kommissionen
    • Gremien
    • Geschäftsstelle
    • Ehrungen
    • Nachrufe
    • Geschichte
    • Jahrestagungen
  • Forschung
    ▼
    • News
    • Forschungseinrichtungen
    • Immunologinnen im Blick
    • Tierversuche bleiben unverzichtbar in Forschung und Klinik
    • Arbeitskreise
      ▼
      • Unsere Arbeitskreise im Überblick
      • Anmeldung Arbeitskreise
      • AK Allergie und Immunologie
      • AK Biologie der B Lymphozyten
      • AK Dendritische Zellen
      • AK Infektionsimmunologie
      • AK Klinische Immunologie
      • AK Komplementsystem
      • AK Neuroimmunologie
      • AK NK-Zellen und ILCs
      • AK Pädiatrische Immunologie
      • AK Reproduktionsimmunologie
      • AK Signaltransduktion
      • AK Transplantationsimmunologie
      • AK Tumorimmunologie
      • AK T-Zellen
      • AK Vakzine
      • AK Veterinärimmunologie
  • Weiterbildung
    ▼
    • Immunologie im Studium
    • DGfI Akademie für Immunologie
      ▼
      • Modul 1: Herbstschule
      • Modul 2: Spring School
        ▼
        • IUIS-DGfI stipends
      • Modul 3: Translational Immunology School
      • Modul 4: DGfI Fachimmunologe
    • Lecture Series
      ▼
      • The Immune Alliance Lectures
      • Lady Mary Montagu Lectures
      • Young Immunologists Seminar Series
    • Weiterbildung für Mediziner
      ▼
      • Klinische Symposium DGfI
      • Zusatz-Weiterbildung Immunologie
  • Nachwuchs
    ▼
    • Young Immunologists
    • Reisekostenbeihilfen und Stipendien
    • Gleichstellung
    • Preise
      ▼
      • Deutscher Immunologiepreis
      • Otto-Westphal-Promotionspreis
      • Hans-Hench-Preis für Klinische Immunologie
      • Fritz-und-Ursula-Melchers-Preis
      • Herbert-Fischer-Preis
      • Werner-Müller-Preis
      • Georges-Köhler-Preis
      • Novartis-Preis
      • Robert-Koch-Postdoktorandenpreis
      • Weitere Preise
  • Für Jedermann
    ▼
    • Immunologie-Journal
    • Für Jedermann
    • Patienten
    • Immunologie-Buch
    • Corona
      ▼
      • FAQ Schutzimpfung
      • Impfung bei Vorerkrankungen
      • Long Covid
      • Forschungsnews
      • Mediathek
  • Mitglieder
    ▼
    • Mitgliederbereich
    • Mitglied werden
    • Korporative Mitglieder
    • Service
      ▼
      • Termine
      • Mitgliederschrift DGfI Quarterly
      • Externe Stellenangebote
      • Forschungsförderung
      • Pressemitteilungen
      • Datenschutz
  • Kontakt